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Abstract 

Within the framework of a generalized model of a 
multicomponent lattice gas, the symmetry properties of 
many-particle interatomic potentials are investigated. The 
relations of the invadance (with respect to the symmetry 
transformations) for the potentials and the relationships 
between their Fourier components are represented in a 
form convenient to check the symmetry adequacy of 
microscopic model potentials in real as well as in 
reciprocal space. The method of statistical-thermody- 
namic description of multicomponent solid solutions is 
suggested, taking into consideration the symmetry 
changes of interatomic potentials due to the structural 
phase transformations. 

1. Introduction 

The statistical-thermodynamic description of a multi- 
component solid solution is feasible when the energy 
parameters of interatomic interactions in a given solid 
solution are known. However, for the clarification of the 
structural (i.e. connected with the space distribution of 
particles) aspect of this problem, the basic information is 
the space-symmetry-related properties of the energy 
parameters. The power of the syrmnetry arguments in 
the study of phase transformations was demonstrated by 
the great success of the Landau phenomenological theory 
and also of the latest statistical-thermodynamic theories 
of structural instabilities connected with the phase 
transformations (e.g. de Fontaine, 1979; Khachaturyan, 
1978, 1983). 

The common shortcoming of well known theories of 
structural phase transformations in solid solutions is still 
that the symmetry properties of interatomic potentials are 
being postulated without factual grounds. For instance, in 
Krivoglaz & Smimov (1964) and Sanchez, Gratias & de 
Fontaine (1982), isotropy of the interatomic potentials is 
assumed. The changes of interatomic potential symmetry 
due to the structural phase transformations are not 
usually taken into consideration in statistical-thermo- 
dynamic analysis. Similar changes, however, can cause 
the essential specific features of the phase diagrams of 
the solid solutions, such as the change of the phase 
transformation order and the alteration of the stability 
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region of the ordered phase (e.g. Golosov & Ushakov, 
1976). 

The importance of pure symmetry examination of 
interatomic potential changes under structural phase 
transformations has been demonstrated in a number of 
studies where the symmetry criteria of the stabilization of 
non-stoichiometric ordered structures forming as a result 
of step-by-step phase transformations were formulated 
(branching scheme) (e.g. Somenkov, 1972; Bugaev & 
Ryzl~ov, 1979). Similar symmetry considerations con- 
ceming the polymorphic reconstructive phase transfor- 
mations with the structure changes, both in impurity and 
in matrix subsystems of interstitial alloys, have been 
performed by Somenkov, Irodova & Shil'shtein (1978). 
In all the above-mentioned studies, however, the 
sequential methods for obtaining the interatomic 
potential symmetry properties are not yet elaborated. 

The aim of the present work is to establish the general 
symmetry requirements on interatomic potentials 
(including the many-particle ones) in a multicomponent 
solid solution under the condition that its space 
symmetry (i.e. the symmetry of the component distribu- 
tion functions) is given. The application of the general 
symmetry concept to resolve the stated problem allows 
one to avoid both the detailed statistical-thermodynamic 
analysis of the system evolution under the variation of 
the external thermodynamic parameters and the necessity 
to specify the microscopic nature of the interatomic 
interactions. 

In §2, the general expression for the configuration 
energy of the multicomponent solid solution within the 
framework of the lattice gas model is obtained, taking 
into account the contributions from many-particle 
interactions. 

In §3, the symmetry properties of the mixing potentials 
of a solid solution with any given space distribution of its 
particles are analyzed. 

In §4, the definition of the Fourier components matrix 
of many-particle mixing potentials is given and the 
relationships between the elements of this matrix are 
obtained. 

In §5 and §6, the symmetry properties of the injection 
potential and the binary mixing potential are taken up 
separately, owing to their wide use in statical-therrno- 
dynamic theories of solid solutions. 
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In §7, the plausible applications of the symmetry 
relations obtained in this work to statistical-thermody- 
namic considerations of multicomponent solid solutions 
are discussed. 

2. Energy of  a mult icomponent  solid solution within 
the lattice gas model  

In the general case, the energy E of some arbitrary 
classical system that consists of ~ interacting particles in 
the external field can be written as 

E = E  o + Y] El(X) + ( 1 / 2 ! )  ~ E2(X,,X2) 
X Xl#X2 

+ . . .  + E n ( X  1, X 2 . . . . .  X,) 
7Z 

= E 0 + y~(1/n!) ~ E,,(X1, X 2 . . . . .  X,), (1) 
n = l  X 1 # X z # . . . # X  n 

where E,(X 1, X 2 . . . . .  X,) is the energy of interaction 
between n chosen particles placed at positions 
Xl, X2 . . . . .  X, and vectors X i under the summation 
over the positions, fixed at some moment, of all 
particles of the system. In (1), it is supposed to be 
impossible to separate out from E 0 any additive 
component that is a function of coordinates only and 
also to separate out from any n-particle interaction 
energy E,(X 1, X 2 . . . . .  X,) the additive component of the 
form Es(Xl, X 2 . . . . .  Xs) with s < n. 

In the case of the multicomponent solid solution 
(MSS) within the lattice gas model,* the particles of 
types a = oq, ot 2 . . . . .  ct z that form the MSS can occupy, 
by definition, only the positions L = (p, R) of some 
space lattice (in general, with basis), which are specified 
by the vectors 

X(L) = X(p, R) = R + hp, (2) 

where R is the radius vector of the basis and hp 
(p  = 0, 1, . . . ,  v) are the components of the lattice basis 
(h o = 0 ) .  

In general, all sublattices are allowed and prohibited 
for particles of definite types.t Therefore, let us specify 

p P P every sublattice p by the set {a } -- {o~ 0, a 1 . . . . .  o~ } of 
the types of particle for which the sublattice p is all~wed 
to be occupied. Describing the momentary space 
distribution of the MSS particles by the set of functions 

i if  the position L is occupied by an 
C,~(L) =-- or-type particle (3) 

in the opposite case 

* In such a model, the averaging over the electron and phonon 
degrees of freedom is supposed to be performed due to the higher rate 
of the processes related to these degrees of freedom in comparison with 
the rates of atomic redistribution among the positions of the lattice. 

t For example, in interstitial solutions, the interstitial impurity cannot 
be placed at the sites of the matrix lattice. Other examples are chemical 
compounds of ceramic type in which an atom of every type occupies its 
own sublatfiee only. 

and taking into account the condition 

C,,(L) = C~(p,  R) -= 0 if  ot • {u p} (4) 

from the above-mentioned reasons for allowed and 
prohibited sublattices, one can rewrite the energy (1) 
for the case of the MSS under consideration in the form* 

N 

E =  )--~(1/n!) y ]  ~ E'~'°'v"~"(L~,L2 . . . .  ,Ln) 
n = l  al,a2,...,an L1,L2,...,Ln 

Li~d-, j 

x C,~, (LOC,~2(L2). . .  C,~.(L,), (5) 

where the summation over ot i is carded out over Z types 
of atoms of the MSS and the summation over 
Li = (Pi, Ri) is carded out over N lattice positions 
available for atoms under the restricting condition 
L i ~zLj,  which means that only summands with 
different variables L 1, L 2 . . . .  are present in (5); 
g~nla2""a"(L1,L2 . . . . .  Ln) is the n-particle interaction 
potential of the particles of the types oq, a2, . . . ,  or,, that 
occupy the positions L 1, L 2 , . . . ,  Ln, respectively. 

Let us eliminate the condition L i ~= Lj under the 
summation in (5) completing the definition of the 
n-particle interaction potentials by the requirement 

E'~"*v'"~"( . . . .  L i . . . .  ,Lj ,  . . .) --  0 if  L i = Lj, (6) 

i.e. setting E~,'~v"~"(L 1, L 2 . . . .  , L,) ----- 0 if  even one pair 
of the positions among the space variables coincides. The 
requirement (6) is connected with the above-mentioned 
irreducibility of the given many-particle energy of any 
order to other ones of lower orders. It is easy to be 
convinced of this, making use of (5) and taking into 
consideration the relationship 

[C,,(L)] ~ = C~(L) (7) 

(s = 1, 2 . . . .  ), which follows from (3). 
Using the condition 

E C,~(p, R) = E C,~(p, R) = 1, (8) 
~--~-0/1 0¢..~.~P 0 

which is valid for any (p, R) and reflects the fact that any 
position of the lattice can be occupied by only one 
particle, we exclude all quantities C~,g(p, R) in (5). Then, 
in the general case, for every sublattice p the 
corresponding a p types of particle must be eliminated. 

Since the choice of the excluded type of atom for 
every sublattice is arbitrary [see (8)], the corresponding 
procedure can be realized in accordance with the reasons 
concerning the convenient statistical-thermodynamic 
description of an alloy. For example, in the case of the 
MSS based on metals, all sublattices can be divided into 

* Within the lattice gas model, the quantity E 0 in (1) is a non- 
configuration part of the energy, which we set equal to zero adopting E 0 
as the origin. 
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two groups: substitutional and interstitial sublattices. It is 
convenient to choose the type of metal whose 
concentration in the MSS is the greatest and whose 
atoms can occupy all substitutional sublattices as the 
excluded one for each of these sublattices. In the case of 
interstitial sublattices, the (interstitial) vacancies are 
always present among the types of interstitial (the 
presence of a vacancy in some position means a lack 
of any particle in this position). Thus, it is convenient to 
choose the vacancy as an excluding type for all 
interstitial sublattices. 

The energy of the MSS, after excluding all quantities 
C~,po( p,  R) in the right-hand part of (5) and taking (6) into 
account, can be represented in the form 

N 

e = Vo + ~-~'~(1/n!) 
n = l  

X y~ y~ Vn a'a2"''a" (L1,L 2 . . . . .  Ln) 
al ,a2,...,~ n LI,L2,...,L n 

x Co~, (L,)C, ,2(L2) . . .  C~,,(L,,), (9) 

where the notation a ¢ a p means that the indices ct i 
(i = 1, 2 . . . . .  n) under the summation cannot take the 
values corresponding to those types of particle that 
are numerated as ¢gP. The quantities V 0 and 
V~":'v"~"(L1,L2 . . . . .  L,) in (9) are the linear combina- 
tions of E~'~z"'(L1,L2 . . . . .  L~) with different s and 
different sets of c¢ and L.* For example, when just the 
same type % is excluded at all sublattices,'[" these 
quantities are def'med by the expression 

V~'a2""~" (L1, L 2 . . . . .  L,) 

N 
= y ]  ~-'~ A,~, 

s=--n t=s-n  
(s/O) 

x y~ E'ds"~2"'"~*-*'~°"'a°(L1,L2 . . . . .  Ls), (10) 
Ln+ 1 , I n +  2 . . . . .  L ,  

where 

(_  1)~-~+tn! 
Anst -- (s - t)!(n - s + t ) ! ( s -  n)! '  (11) 

n = 0, 1 ..... N. In particular, 

N 

V 0 = y]~(1/n!) ~ E~°"x'°(L1,Lz . . . . .  Ln) 
n = l  L 1 ,L  2 . . . . .  L n 

= y]E~I°(L) + (1/2!) E E~2°~°(L,, L2) + .... (12) 
L L 1 ,/..2 

*Note that the quantifies V~'~v"~(L1,L2 . . . . .  L,), which by 
definition are the linear combinations of the quantities 
E~ ~*'~*(L1, L 2 . . . . .  L,), similar to the latest ones, must meet condition 
(6). 

I" This case corresponds to multicomponent substitutioml or inter- 
stitial alloys. 

N 
V~(L) = Y~[1 / (n -  1)!1 ~ [E~,~°'"~°(L, L2 ..... L,) 

n = l  i ,  2 . . . . .  L n 

- E'~d"'"°(L,  L2  . . . . .  L.)] 

= [E~I (L) - E~I°(L)] + Y][E~2~°(L, L2) 
1-2 

- E~2°~'0(L, L2)] + .... (13) 

V2 =la2(l L2) 

N 

= y~'~[1/(n- 2)!] y ]  [E~n'~2~°~°(L1,L2 ..... L~) 
n = 2  I-3 ..... Ln 

- 2E~'~°'"~° (L1, L2 . . . . .  L , )  --[- E~°"'a°(Zl, Z 2 . . . . .  Zn) ] 

= [~'~2(L,, L9  - 2~'~°(L~,/~) + ~°~°(L,, Lg] 

+ Y~[E~a'°~2a°(L1, L2, L 3 ) -  2E~a'°~°O°(L,, L2, L3) 

-~- E~3°°t°~t°(Zl , Z2, Z3)] "3V .. . .  (14) 

Let us call the quantities V~ ~2"'''~" (Ll, L 2 ..... Ln) the n- 
particle mixing potentials of the MSS.* Their physical 
meaning follows from (9). Thus, the quantity V 0 is the 
energy of the system, which consists only of the particles 
with the fixed type t~  at every sublattice p, and the 
addend to V 0 in E is connected with the dissolution of the 
particles of types a # a p. The quantity V~(p ,  R) is the 
effective one-particle energy of the injection of the 
particle a # aP into the position (p, R) and the quantities 
V~,'~2""~"(L1,L2 . . . . .  L,,) define the effective interactions 
of n particles of the types a # a p, which are injected into 
corresponding positions of the crystal lattice. 

The model of the lattice gas for the MSS considered 
above is the generalization of the Izing model. It differs 
from the conventional Izing model by the multicompo- 
nency of the solid solution, by taking into consideration 
any-order many-particle interactions and by the lack of 
limitations on the radii of these interactions. 

3. Symmetry of mixing energies 

The space group G of the MSS at a given structural 
thermodynamic equilibrium state within the framework 
of the model under consideration is the common 
symmetry group of the set of functions {P,~(L)} 
(ct = a l , a E , . . . , a z ) ,  where every quantity P,~(L) is 
determined by the expression 

P~(L) -- (C,,(L)) (15) 

* The quantity E~(L~, I_~) + E~S(L~, 1_,2) - 2E~S(Ll,/_,2), which is 
usually called the mixing energy, can be obtained from (14) in the 
particular case of the binary substitutional solid solution A - B (% -- B) 
if only pairwise interactions are taken into account. 
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(the ( . . . )  sign means the statistical average over the 
Gibbs ensemble) and is equal to the probability of 
finding an a - type  pai'ticle at the position L. In the general 
case G ___ G, where G is the space symmetry group of the 
MSS crystal  lattice that is specified by the positions L. 
G = G in the case of a disordered (chaotic) distribution 
of the particles of every type among the allowed 
positions. 

Let us apply some symmetry transformation g ~ G to 
the MSS. Then, every given particle will change its 
position L to the symmetry-equivalent position L' = gL.* 
The new distribution of the particles will be characterized 
by the set {C~(L)} of functions, which are determined by 
the relationship 

C,~(L) =- C,,(g-IL), (16) 

where g-1 6 G is the reciprocal element to g. The energy 
E' of the space-transformed MSS can be represented [in 
accordance with (9)] in the following form: 

N 

E ' =  V 0 + ~ ( a / n l )  
n = l  

x ~ ~ V~ '°~2"'''~" (LI ,L  2 . . . . .  L,,) 
a1,0t2,...,~ n LI,L2,...,Ln 

x &cq(Li)C.a2(L2)...&~.(L.), (17) 

| ] ' ° q  ~ 2 " " ~ n / ' l  . --~ where the coefficients .,, ~1 ,L2,  L.) at any 
degrees of (7,~(L) are the same as the corresponding 
coefficients in (9) because the transformation g is an 
element of the space symmetry group G of the MSS and, 
correspondingly, sends the MSS into itself. Using (16) 
and changing the summation over the variables L i in 
(17) by the equivalent summation over the variables 
L i = g - l L  i (which are also denoted by Li, taking into 
account the above-mentioned equivalence), we obtain 

N 

E ' =  V 0 + ~--]~(1/nt) 
n = l  

x ~_~ ~ V~ ''~v''~" (gL,, gL 2 . . . . .  gL,,) 
a l  ,t~2,...,a n L1,L2,...,Ln 

~o 
X Coq (L 1)Cu2 (L2) . . .  C~. (L,). (18) 

On the other hand, the MSS energy cannot change its 
numerical value under any transformation from the space 
symmetry group G, i.e. 

E - - E ' .  

For the realization of this condition, we must put, in 
(9) and (18) (which determine E and E', respectively), the 
coefficients of the same products of the functions C,~(L) 

* As declared above, the group G is the subgroup of the symmetry 
group G of the MSS crystal lattice. Therefore, under any transformation 
g 6 G, every position L must be sent to some position L' -- gL of the 
same lattice: X(L') = gX(L). 

to be equal. Thus, we obtain* 

V~I~2"~"(gL1, gL 2 . . . . .  gL,,) = V~I~2""~"(L1, L 2 . . . . .  Ln), 

(19) 

where g ~ G, n = 1, 2 . . . . .  
Relationship (19) reflects the important fact that the 

mixing potentials of any two sets with the same number 
of particles are equal if even one symmetry transforma- 
tion of the MSS which sends one set to another (under 
the condition that the types of corresponding particles 
coincide), exists. 

The elements g = {SIr(S) + Rm} of the MSS symme- 
try space group G can be found making use of the 
condition1" 

P~(gL) = P,~(L) (20) 

(for every a = ot 1 , ct 2 . . . . .  Otz), where gL is the position of 
the lattice that can be obtained from the arbitrary chosen 
position L -- (p,  R) by the symmetry transformation g: 

X(gL) = gX(L) 

= {SIr(S) + Rm}X(L) 

= S(R + hp) + z(S) + R m. (21) 

Here, in accordance with the notations of Seitz (1936) 
for the elements of the space group, S is the matrix 
representation for the element of crystal class of group G, 
z(S) is the translation vector which does not coincide 
with any translation period R m of the group G given by 
the equalities 

Po,(P, R + Rm) = P,~(p, R), (22) 

which follow from (20) as a particular case under 
g = {UIRm} where U is the unity matrix. 

In the case of a MSS with an arbitrary type of long- 
range order in the distribution of the components among 
the positions of the crystal of lattice gas, let us choose the 
primitive unit cell so that the set of radius vectors { R } of 
the unit cells coincides with the set { R m } of translation 
periods of group G. Then, assuming in (22) that 
R m = - R ,  we obtain 

P~(p, R) = P~(p, 0) (23) 

for any a,  p and R. 

* Note, that a similar line of reasoning was used by Maradudin & 
Vosko (1968) for the statement of the transformation rules for atomic 
force constants of the crystal. The difference lies in the fact that the 
mixing potentials (of any order) are scalar quantities whereas the atomic 
force constants form a tensor of second order. 

t In the present work, the effects connected with the existence of the 
internal (interphase) and external surfaces of the MSS crystal are 
neglected and, therefore, the crystal lattice can be considered as inf'mite 
and homogeneous when performing symmetry transformatiom. Note 
that a similar line of reasoning is also valid in the case of finite and 
inhomogeneous MSS for the essentially massive homogeneous domains 
within the MSS when the surface effects can be neglected. 
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Assuming in (19) that g = {UIRm}, which corresponds 
to the pure translation symmetry transformations from 
group G, we obtain the property of the invariance to the 
translations Rm: 

V~lCt2""etn(pl,  R1 + Rm; P2, R2 + Rm; ...; Pn, Rn + Rm) 

= V~2 "~(p 1, R1; p2, R2; ...; p~, R~), (24) 

where the designation of the positions L -  (39, R) is 
written in explicit form and the following relationships 
from (21) are taken into account: 

X(gL) =-- gX(L) 

= {U[Rm}X(p ,  R) 

-- (R +Rm) + h  p 

= X(p, R + Rm). (25) 

Putting R m = - R  n in (24) (which is available due to 
the corresponding choice of the unit cell), we obtain 

V~'~2""~"(px, R1 -- R~; P2, R2 - R~; ...; 

p~_~, Rn_ 1 - R~; pn, 0) 

= V~a2~'~(pl,R1;PE, RE;...;p~,R~), (26) 

which means that the mixing potential of the nth order 
depends only on ( n -  1) space variables, i.e. on the 
radius vectors of (n - 1) unit cells respective to the unit 
cell of an arbitrary chosen particle (we give the number n 
to this particle for definiteness). 

Rearranging the variables of the summation in (9): 
ot i ~ ctj, L i ~-> Ly (where i and j are the numbers of two 
arbitrarily chosen particles) and then interchanging the 
multipliers C,~,(Li) and C~(Lj), we obtain [taking into 
account the random characier of the functions Ca(L)] the 
next (commutative) property of the mixing potentials: 

Vn "''~i'''%''t v'"%"cli'"[ Lj, L i . . . .  ). ~, .... L i . . . . .  Lj .... ) : , n  l ,  . . . . . . . .  

(27) 

4. Properties of Fourier transforms of mixing 
potentials 

The Fourier components of the binary mixing potentials 
are the basic parameters in a number of advanced 
theories of the atomic order (e.g. de Fontaine, 1979; 
Khachaturyan, 1978, 1983). Therefore, here we consider 
the symmetry properties of the Fourier transforms of 
mixing potentials. 

The Fourier transformation according to (26) may be 
determined as 

Vff't~2""t~n (Pl, kl; P2, k2; ...; Pn-1, kn-1; Pn) 
E 't r ~ l  ~2""~tn " ~ ° 

- -  k 'n  ~ P l  ' l ~ l '  P2,R2; .'.; P ~ - I  ,Rn-1 ; p~,0) 
R1 ,R2 ..... Rn_ 1 

X exp[-in~=ll(kl, Rl)  ] 

= ~ V~l~2"'"~"(p 1,R1; P2,R2; ...; Pn,Rn) 
R1 ,R2 ..... Rn_  1 

In ] × exp - i  ~ (k/, R l - Rn) . (28) 
/=1  

The equality is obtained by replacing the summation 
variables R t with R t - R  n (l = 1, 2 . . . . .  n - 1) and taking 
(26) into account. 

Taking advantage of the symmetry transfommtion 
rules (21) for two sites (Pt, Rt) and (p,, Rn), one finds 

R,  - R,, = S - I ( R t l  - R', + hp; - hp,) - (hi, ̀ - hp,) 

(29) 

[L' = (p', R') m gL = g(p ,  R)]. Substituting this expres- 
sion into (28) and using the syrmnetry properties of the 
mixing potentials (19), we obtain 

' ...; ' k ' V~ ''~2'''~" (P~, Ski; P2, Sk2; Pn-1, S n-l; Pn) 

= Vn~'~2""~(Pl, kl; P2, k2; ...; P,,-1, k,,-1; Pn) 

x exp i ~[(Skt ,  hp , -  h#) - (k,, hp, - hp)] , 
l = l  

(30) 

where the vector S k i (i = 1, 2 ..... n) is obtained from 
vector k i as a result of the transformation described by 
matrix S. 

From (28), we obtain the following two equalities: 

Vna'a2""a~(Pl, - k l ;  P2, -k2;  ---; Pn-1, --kn-1; P,,) 
f/rO~lt~2...t~n*/" -- 

= "n ~.pl, kl;P2, k2; ..., pn_l ,kn_l ;Pn) ,  (31) 

Vn£1ll0t2""ffn( . . . .  pj, kj + b .... ) --" V~0flOl2""ffn( . . . .  pj, kj . . . .  ), 

(32) 

where b is the translation vector of the reciprocal lattice: 
(b, Rm) = 2n'K (K an integer) for all feasible R m and j is 
an integer in the interval [1, n -  1]. Using (27), we 
obtain 

Vn ' "  "Oti"" .otj . . .  / (...Pi, ki...pj, kj. . .)  
4", . . .Olj . . .¢l i . . .  I" 

: Vn ~....pj, kj...pi, ki...), (33) 

where i and j are any integers within the interval 
[1, n - 1]. 

Equations (30)-(33) give the general relationships 
between the Fourier components of the mixing poten- 
tials. 

Within the well known models of solid solutions (de 
Fontaine, 1979; Khachaturyan, 1978, 1983) in considera- 
tion of the configuration energy, as a rule, only 
contributions from the injection and binary mixing 
potential are taken into account. Thus, it is advisable to 
examine in detail the symmetry properties of these low- 
order mixing energies. 
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5. Properties of the injection potential 

From the translation properties of the mixing potentials 
(26), we have 

V~(p, R) = V~(p, O) = ~p, (34) 

for the injection potential (unitary mixing potential), i.e. 
the potential 4)~ of the injection for the particle of the 
type ot ~ o~ into the position with the number p within 
the unit cell does not depend on the coordinates of this 
unit cell. Under this condition, the symmetry properties 
(19) lead to the following equality for the injection 
potentials: 

= (35) 

where the set of numbers p' is given by the symmetry 
transformations X(p', R') = gX(p, R), g ~ G. 

Thus, the injection potentials of a given atom into two 
symmetry-equivalent positions (i.e. positions that can be 
sent from one to the other owing to the symmetry 
transformations from group G) are equal. 

6. Properties of binary mixing potentials and their 
Fourier transforms 

For the binary mixing potential, using (26), (27) and 
(19),* we obtain 

V~13(p, R1; q, R2) = V21~(p, R 1 - R2; q) 

W~q~(R, - R2) , 

w~q~(R) = w~( -R) ,  

w~,~(R') = w;q~(R). 

(36) 

(37) 

(38) 

Equality (38) implies that R = R 1 - R2, R' = R' 1 - R[, 
X(p', R'~) = gX(p, R1) and X(q ~, R[) = gX(q, R2). 

Fourier transforms of the binary mixing potentials, in 
accordance with (28), are determined as 

~q~(k) = ~ W~pq~(a) exp[-i(k, a)]. (39) 
n 

From this, corresponding to (30)--(33), the following 
relationships between the components of the Fourier 
transforms (39) take place: 

~f f (Sk)  = ~q~(k)exp[i(Sk, he, - he) - i(k, h e - hq)], 

(40) 

~q~(-k) -- ~,pq~*(k), (41) 

~q~(k + b) = ~,'~,q~(k). (42) 

* The notation for the binary mixing potential is similar to those used 
by de Fontaine (1979), Khachaturyan (1978, 1983) and Bugaev & 
Tatarenko (1989). 

Equation (40) implies that X(p',R'O={SIr(S)+ 
Rm}X(p, Ra) and X(q', R~) = {SI~(S) + Rm}X(q, R2). 
Furthermore, from (37) and (39), 

~ ( k )  = ~ ( - - k ) .  (43) 

The symmetry analysis of eigenvalues A~(c~, fllk) of 
matrix II~V~pq~(k)II, which are determined by the equations 

~ ( k ) ~ ( a ,  fllk) -- A~(ce, fl lk)~(~, fllk) (44) 
q 

[index a enumerates eigenvalues A~(ot, filk) and eigen- 
vectors ~(o~, fllk)], occupy an important place in the 
concentration wave method (see §7). With the aim of 
obtaining the general symmetry properties of A"(a, fllk), 
we rewrite (44) for the wave vector Sk: 

~q~(Sk)~(a, fllSk) ---- A~(a, fllSk)~(~, fllSk). 
q 

(45) 

Substituting p for p' and q for q' and using the 
transformation rule (40) for matrix II~pq~(k)ll, we have 

~pq~(k){exp[-i(Sk, hq,) + i(k, hq)]lf~(ot, fllSk)} 
q 

= A"(ot, fllSk){exp[-i(Sk, he,) 

+ i(k, he)lYe(Or, fllSk)}. (46) 

From (44) and (46), one can obtain, using a specific 
numeration of eigenvalues, 

a~(a, riSk) = A~(o~, fllk). (47) 

Using the properties (41)-(43) of matrix II~pq~(k)ll in 
(44), one can easily obtain 

AO(a, fll - k) = A~(ot, fllk), (48) 

A~(ot, fllk + b) = A"(a, fllk). (49) 

Thus, the eigenvalues A"(o~, fllk) of the Fourier trans- 
forms of the binary mixing potential have the following 
general symmetry properties: (1) periodicity in appro- 
priate reciprocal space; (2) invariance to inversion 
transformation; (3) the symmetry point group of 
A~(c~, fllk) coincides with the symmetry crystal class of 
the MSS. 

Note that the relationships (47)-(49) for the particular 
case of a binary disordered substitutional alloy were 
derived by Sanchez, Gratias & de Fontaine (1982) under 
the assumption of the isotropy of the pairwise interatomic 
potential and by Zhorovkov (1993) under the postulation 
of the symmetry property (38). 

7. Concluding remarks 

In solid solutions, a lowering of the temperature gives a 
sequence of phase transformations of ordering type until 
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the stoichiometric composition of the superstructure (in 
agreement with the Nemst principle) coincides with the 
composition of the system (or further evolution of the 
system will meet the limitations concerning the kinetic 
factor). Such a scheme for atomic ordering was 
considered, for example, by Krivoglaz (1969), Somen- 
kov (1972) and Khachaturyan (1978, 1983). At every 
stage of the ordering, both the symmetry of the relative 
distribution of the different atom types at positions within 
the crystal lattice and, in general, the symmetry of the 
lattice itself, will change. The important generalization of 
the conventional lattice gas model leads to the use of 
symmetry-adequate interatomic potentials in every 
region of the phase diagram characterized by the 
definite space symmetry. The symmetry properties of 
interatomic potentials for every stage of the ordering can 
be stated by using the method proposed in this paper on 
condition that the symmetry of the corresponding ordered 
state is known. The information about the properties of 
interatomic potentials in turn could facilitate the study of 
structural and thermodynamic features of the MSS at a 
corresponding stage of the ordering and the prediction of 
the phase transformations of order-order type to another 
structural stage (including the prediction of the space 
symmetry of the new ordered stage). 

For example, in the analysis of the thermodynamic 
stability of ordered structures within the concentration 
waves method, it is necessary to know the normal 
concentration modes of the structural instabilities. These 
modes are specified by the eigenvectors of the binary 
mixing-potential matrix II~pq~(k)ll (de Fontaine, 1979; 
Khachaturyan, 1978, 1983). It was shown, for instance, 
by Sanchez, Gratias & de Fontaine (1982), Khachaturyan 
(1978, 1983), Solov'eva & Shtem (1990) and Zhorovkov 
(1993) that finding the concentration modes can be 
realized by using the information on independent 
components of this matrix only. The relationships 
obtained in §6 make it possible to establish which 
components of the matrix IIr~pq~(k)l I can be considered as 
independent and also to find analytical relationships 
between corresponding components. 

Thus, the opportunity now arises of predicting the 
structural types corresponding to all regions of the phase 
diagram of a solid solution (consistently from the 
disordered state at sufficiently high temperatures when 
the symmetry of the MSS coincides with the symmetry 

of the initial crystal lattice of the MSS), taking into 
consideration the symmetry changes of interatomic 
potentials due to structural transformations. In the case 
when the disordered state cannot take place even at 
sufficiently high temperatures (for instance, in some 
chemical compounds of the intermetallic type and also in 
ceramics), the above-mentioned scheme can be realized 
starting from the given ordered state if its structure (i.e. 
the space symmetry) is known, for example, from 
diffraction experiments. 

The suggested method of finding the symmetry 
properties of interatomic potentials can also be useful 
in the development (within one or other microscopic 
theory) of such potentials for multicomponent solid 
solutions. 
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